

16) Appendix O

Civil Plans and Stormwater Report Prepared by CHRISP Consulting

Planning Proposal Stormwater Assessment

Dural Health Hub

Client: Healing ONR

Document No: 21067_Dural Health Hub_Stormwater

Revision: 02

Date: 14th February 2022

Document Control Record

Document prepared by:

CHRISP Consulting ABN: 11 164 806 044

+61 408 696 526

info@chrispconsulting.com.au

A person using CHRISP Consulting documents or data accepts the risk of:

- a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- b) Using the documents or data for any purpose not agreed to in writing by CHRISP Consulting.

Document control										
Document title 21067_Dural Health Hub_Stormwater										
Pack	age	Planning Proposal		Status	For PP Submission					
Docu	ıment Number	220214_21067_Dural Health Hub_Stormwater								
Clien	it	Healing ONR								
Rev	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver				
01	12 th February 2022	For Client Review	C.Paunescu							
02	14 th February 2022	For PP Submission	C.Paunescu							
Curre	ent revision	02								

Approval									
Author signature	cpainese.	Approver signature							
Name	Chris Paunescu	Name							
Title	Director	Title							

1 Introduction

1.1 Project Background

CHRISP Consulting has been engaged to assess civil and stormwater engineering options for a proposed health services facility at 679-685 Old Northern Road, Dural. To support this planning proposal application, CHRISP Consulting have assessed the existing stormwater and proposed stormwater requirements as outlined within Hornsby Shire Council's DCP 2013 standards and best engineering practices.

The combined lot area is 3,471m2 with a retainment of approximately 10% pervious surfaces in post-development end state. There is no inground surface stormwater infrastructure along the property frontage on Old Northern Road and the site falls towards the east (rear boundary) at an approximate grade of 8%.

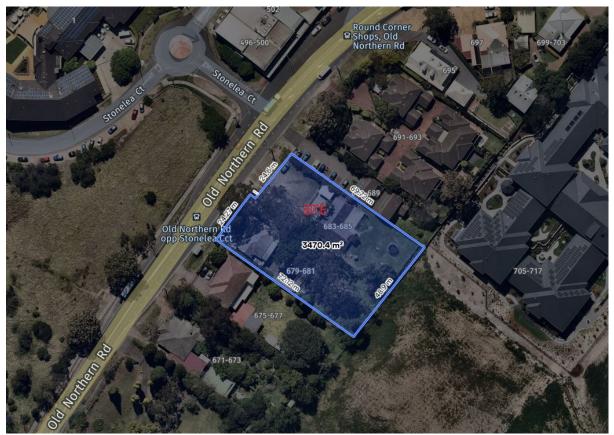


Figure 01 - Site Plan

1.2 Review of Council's Planning Proposal Pre-Lodgement Meeting Comments

It is understood that Council requires a stormwater concept plan to show proposed method of drainage for the proposed development to Council's drainage system by gravity, including detailed calculations.

CHRISP Consulting Response:

The site was assessed against 3 possible Stormwater Management Options using DRAINS software against Hornsby Shire Council Stormwater Drainage (Design) Specification 0074 which states:

- (a) Post-development flow Q20 to not exceed pre-development Q5
- (b) Pre-development (Q5) 100% pervious = 67 litres/sec
- (c) Post-development (Q20) 10% pervious and 90% impervious = 152 litres/sec

Specification 0074 also states that OSD requirements are under review and Q100 may be required to be detained to meet Pre-development Q5

(a) Post-development (Q100) 10% pervious and 90% impervious = 197 litres/sec

Stormwater Management Option 1

- 1. OSD tank for Q20 requirements are:
- (a) Volume: 48.2 m3
- (b) Tank size: 35m2 x 138m deep with 190mm outlet orifice
 - (flows to be detained to Q5 pre-development)
- 2. OSD tank for Q100 requirements are: 55m2 x 1.6m deep with 180mm outlet orifice
- (a) Volume: 70.0 m3
- (b) Tank size: 55m2 x1.3m deep with 190mm outlet orifice
 - (flows to be detained to Q5 pre-development)
- 3. OSD to discharge along rear boundary via level spreader with suitable scour protection

Stormwater Management Option 2

- 4. OSD on grade basin to be as per tank volume but restricted to 1200mm deep
- 5. OSD to discharge along rear boundary via level spreader with suitable scour protection

Stormwater Management Option 3

- 6. Drainage easement be obtained through neighbouring property to allow direct stormwater discharge into existing basin
- 7. Typical swale dimensions to be: 500mm base width, 1400mm top width & 150mm depth
- (a) Swale can provide 87 litres/sec capacity at 1.0% channel slope. This capacity is suitable to cater for OSD outlet discharge
- (b) Swale can provide 245 litres/sec capacity at 8.0% channel slope (assumed slope based on available adjacent survey). This capacity is suitable to cater for zero OSD capacity which shall require the increase in storage volume of the existing downstream basin

This calculation summary are shown on CHRISP Consulting drawing 21067-C201–Revision D Detailed Calculations

DRAINS MODEL INPUT DATA

Name	T	Family	Size	Ponding	Pressure	Surface	Max Pond	Base			1
Name	Type	Family	Size					Inflow			
				Volume	Change	Elev (m)	Depth (m)				
***				(cu.m)	Coeff. Ku			(cu.m/s)			
N1	Node							0			
N366	Node					8.6		0			
DETENTION BASIN DETAILS											
Name	Elev		Not Used	Outlet Type	K	Dia(mm)	Centre RL				
OSD	8	0		Orifice		190	8.2				
	8.2	1									
	8.21	55									
	8.31	55									
	8.41	55									
	8.51	55									
	8.61	55									
	8.71	55									
	8.81	55									
	8.91	55									
	9.01	55									
	9.11	55									
	9.21	55									
	9.31	55									
	9.41	55									
	9.51	55									
	9.61	55									
SUB-CATCHMENT DETAILS											
Name	Pit or	Total	EIA	Perv	RIA	EIA	Perv	RIA			
		Area		Area		Time	Time	Time			
		(ha)	%	%	%	(min)	(min)	(min)			
Pre-Dev	N1	0.3471	0	100	0	5	5	2			
Post-Dev	OSD	0.3471	90	10	0	5	5	2			
PIPE DETAILS	030	0.5471	50	10		,					
Name	From	То	Length	U/S IL	D/S IL	Slope	Туре	Dia	I.D.	Rough	Pipe Is
Hame	riom	10	(m)	(m)	(m)	(%)	турс	(mm)	(mm)	Rougii	ripe is
Pipe1	OSD	N366	10	8.075	7.975	1	uPVC	225		0.012	NewFixed
OVERFLOW ROUTE DETAILS	USD	14200	10	0.073	7.373	1	ur vc	223	242	0.012	INEWFIXED
	From	То	Travel	Cnill	Crest	Weir	Cross	Safe Depth	SafeDepth	Safe	Bed
Name	From	10	Time	Spill		Coeff. C			Minor Storms	DxV	
				Level	Length	Coen. C	Section				Slope
051	000	Nacc	(min)	(m)	(m)	4.7	CI.	(m)	(m)	(sq.m/sec)	(%)
OF1	OSD	N366	0.3	9.6	1	1.7	Swale	0.15	0.1	1	1
	Ļ										
This model has no pipes with non-return v	alves										

DRAINS results 20% AEP (1 in 5yr ARI)

PIT / NODE DETAILS				Version 8			
Name	Max HGL	Max Pond	Max Surface	Max Pond	Min	Overflow	Constraint
		HGL	Flow Arriving	Volume	Freeboard	(cu.m/s)	
			(cu.m/s)	(cu.m)	(m)		
N366	8.16		0				
SUB-CATCHMENT DETAILS							
Name	Max	EIA	Remaining	EIA	RIA	PA	Due to Storm
	Flow Q	Max Q	Max Q	Tc	Tc	Tc	
	(cu.m/s)	(cu.m/s)	(cu.m/s)	(cu.m/s)	(min)	(min)	(min)
Pre-Dev	0.067	0	0.067	5	2	5	20% AEP, 1 hour burst, Storm 5
Post-Dev	0.114	0.114	0	5	2	5	20% AEP, 5 min burst, Storm 1
PIPE DETAILS							
Name	Max Q	Max V	Max U/S	Max D/S	Due to Storm		
	(cu.m/s)	(m/s)	HGL (m)	HGL (m)			
Pipe1	0.055	1.44	8.591	8.161	20% AEP, 20 min burst, Storm 4		
OVERFLOW ROUTE DETAILS							
Name	Max Q U/S	Max Q D/S	Safe Q	Max D	Max DxV	Max Width	Max V
OF1	0	0	0.054	0	0	0	0
DETENTION BASIN DETAILS							
Name	Max WL	MaxVol	Max Q	Max Q	Max Q		
			Total	Low Level	High Level		
OSD	8.77	31.2	0.055	0.055	0		
Run Log for DRAINS MODEL Re	v 01.drn run	at 15:58:43	on 10/2/2022 us	ing version 2	020.061		
Flows were safe in all overflow	routes.						

DRAINS results 5% AEP (1 in 20 yr ARI)

DITAINS TESUIES 570 ALT 12 III 2							
PIT / NODE DETAILS				Version 8			
Name	Max HGL	Max Pond	Max Surface	Max Pond	Min	Overflow	Constraint
		HGL	Flow Arriving	Volume	Freeboard	(cu.m/s)	
			(cu.m/s)	(cu.m)	(m)		
N366	8.18		0				
SUB-CATCHMENT DETAILS							
Name	Max	EIA	Remaining	EIA	RIA	PA	Due to Storm
	Flow Q	Max Q	Max Q	Tc	Tc	Tc	
	(cu.m/s)	(cu.m/s)	(cu.m/s)	(cu.m/s)	(min)	(min)	(min)
Pre-Dev	0.101	0	0.101	5	2	5	5% AEP, 1 hour burst, Storm 6
Post-Dev	0.152	0.152	0	5	2	5	5% AEP, 5 min burst, Storm 1
PIPE DETAILS							
Name	Max Q	Max V	Max U/S	Max D/S	Due to Storm		
	(cu.m/s)	(m/s)	HGL (m)	HGL (m)			
Pipe1	0.067	1.59	8.816	8.185	5% AEP, 20 min burst, Storm 8		
OVERFLOW ROUTE DETAILS							
Name	Max Q U/S	Max Q D/S	Safe Q	Max D	Max DxV	Max Width	Max V
OF1	0	0	0.054	0	0	0	0
DETENTION BASIN DETAILS							
Name	Max WL	MaxVol	Max Q	Max Q	Max Q		
			Total	Low Level	High Level		
OSD	9.08	48.2	0.067	0.067	0		
Run Log for DRAINS MODEL R	ev 01.drn rur	at 15:59:08	on 10/2/2022 u	sing version	2020.061		
Flows were safe in all overflow	v routes.					1	

DRAINS results 1% AEP (1 in 100yr ARI)

<u>OUYr ARI)</u>						
			Version 8			
Max HGL	Max Pond	Max Surface	Max Pond	Min	Overflow	Constraint
	HGL	Flow Arriving	Volume	Freeboard	(cu.m/s)	
		(cu.m/s)	(cu.m)	(m)		
8.2		0.027				
Max	EIA	Remaining	EIA	RIA	PA	Due to Storm
Flow Q	Max Q	Max Q	Tc	Тс	Tc	
(cu.m/s)	(cu.m/s)	(cu.m/s)	(cu.m/s)	(min)	(min)	(min)
0.147	0	0.147	5	2	5	1% AEP, 20 min burst, Storm 10
0.197	0.197	0	5	2	5	1% AEP, 5 min burst, Storm 1
Max Q	Max V	Max U/S	Max D/S	Due to Storm		
(cu.m/s)	(m/s)	HGL (m)	HGL (m)			
0.08	1.81	9.099	8.197	1% AEP, 25 min burst, Storm 1		
Max Q U/S	Max Q D/S	Safe Q	Max D	Max DxV	Max Width	Max V
0	0	0.159	0	0	0	0
Max WL	MaxVol	Max Q	Max Q	Max Q		
		Total	Low Level	High Level		
9.48	70	0.08	0.08	0		
v 01.drn run	at 15:59:21 d	n 10/2/2022 us	ing version 2	020.061		
	Max HGL 8.2 Max Flow Q (cu.m/s) 0.147 0.197 Max Q (cu.m/s) 0.08 Max Q U/S 0 Max WL	Max HGL Max Pond HGL 8.2 Max EIA Flow Q Max Q (cu.m/s) (cu.m/s) 0.147 0 0.197 0.197 Max Q Max V (cu.m/s) (m/s) 0.08 1.81 Max Q U/S Max Q D/S 0 Max WL MaxVol 9.48 70	Max HGL Max Pond Max Surface HGL Flow Arriving (cu.m/s) (document) (document) (document) (document) (document) (document) (document) (document) (document) (cu.m/s) (document) (document)	Max HGL Max Pond Max Surface Max Pond	Max HGL Max Pond Max Surface Max Pond Min Freeboard (cu.m/s) (cu.m) (m)	Max HGL Max Pond Max Surface Max Pond Min Overflow

Trapezoidal Open Channel Flow

Q100 discharge from OSD Tank = 80 l/s

1.0 Trapezoidal Channel Data

base width at invert = depth = B = 0.500 0.150 D=

3.000 3.000 Horizontal [= H.I] Horizontal [= H.r] LHS bank slope = 1 Vertical in RHS bank slope = 1 Vertical in

Manning's roughness coefficient = 0.035 n = 1.000 slope of invert = So = 100.0 = 0.010 m / m

2.0 Flow Rating Table

depth	area	wetted	hydraulic	velocity	flow	surface	Froude	
of flow	of flow	perimeter	radius	of flow	rate	width of flow	Number	VxD
d	Α	Wp	R	v	Q	Т	Fr	
(m)	(m^2)	(m)	(m)	(m/s)	(m^3/s)	(m)		
1	2	3	4	5	6	7	8	
0.000	0.000	0.500	0.000	0.000	0.000	0.500	0.000	0.000
0.008	0.004	0.547	0.007	0.106	0.000	0.545	0.399	0.001
0.015	0.008	0.595	0.014	0.164	0.001	0.590	0.444	0.002
0.023	0.013	0.642	0.020	0.209	0.003	0.635	0.471	0.005
0.030	0.018	0.690	0.026	0.248	0.004	0.680	0.491	0.007
0.038	0.023	0.737	0.031	0.283	0.006	0.725	0.507	0.011
0.045	0.029	0.785	0.036	0.314	0.009	0.770	0.520	0.014
0.053	0.035	0.832	0.041	0.342	0.012	0.815	0.531	0.018
0.060	0.041	0.879	0.046	0.369	0.015	0.860	0.540	0.022
0.068	0.047	0.927	0.051	0.393	0.019	0.905	0.549	0.027
0.075	0.054	0.974	0.056	0.417	0.023	0.950	0.556	0.031
0.083	0.062	1.022	0.060	0.439	0.027	0.995	0.563	0.036
0.090	0.069	1.069	0.065	0.461	0.032	1.040	0.570	0.041
0.098	0.077	1.117	0.069	0.481	0.037	1.085	0.576	0.047
0.105	0.086	1.164	0.074	0.501	0.043	1.130	0.581	0.053
0.113	0.094	1.212	0.078	0.520	0.049	1.175	0.586	0.059
0.120	0.103	1.259	0.082	0.539	0.056	1.220	0.591	0.065
0.128	0.113	1.306	0.086	0.557	0.063	1.265	0.596	0.071
0.135	0.122	1.354	0.090	0.574	0.070	1.310	0.600	0.078
0.143	0.132	1.401	0.094	0.592	0.078	1.355	0.605	0.084
0.150	0.143	1.449	0.098	0.608	0.087	1.400	0.609	0.091

3.0 Notes

1. depth of flow d at D/20 increments

2. area of flow, A = [d * B] + [0.5 * d * d * H.I] + [0.5 * d * d * H.r] 3. wetted perimeter, Wp = B + [d * sqrt(1 + H.l^2)] + [d * sqrt(1 + H.r^2)]

4. hydraulic radius, R = A / Wp

5. velocity of flow, v = [1 / n] * [R^0.667] * [So^0.5] 6. flow rate, Q = A * v

7. surface width of flow, T = B + [d * H.I] + [d * H.r] 8. Froude number, Fr = v / [(g * A / T)^0.5] ===> Manning's equation of flow

when Fr < 1 ===> flow is sub-critical when Fr = 1 ===> flow is critical

when Fr > 1 ===> flow is super-critical

Trapezoidal Open Channel Flow

Q100 discharge from Site (No OSD) = 197 l/s

1.0 Trapezoidal Channel Data

0.500 base width at invert = depth =

Horizontal [= H.I] Horizontal [= H.r] LHS bank slope = 3.000 3.000 1 Vertical in RHS bank slope = 1 Vertical in

Manning's roughness coefficient = n = 0.035 slope of invert = So = 12.5 1 in 0.080 m/m

2.0 Flow Rating Table

depth	area	wetted	hydraulic	velocity	flow	surface	Froude	
of flow	of flow	perimeter	radius	of flow	rate	width of flow	Number	VxD
d	A	Wp	R	v	Q	Т	Fr	
(m)	(m^2)	(m)	(m)	(m/s)	(m^3/s)	(m)		
1	2	3	4	5	6	7	8	
0.000	0.000	0.500	0.000	0.000	0.000	0.500	0.000	0.000
0.008	0.004	0.547	0.007	0.300	0.001	0.545	1.128	0.002
0.015	0.008	0.595	0.014	0.463	0.004	0.590	1.256	0.007
0.023	0.013	0.642	0.020	0.592	0.008	0.635	1.334	0.013
0.030	0.018	0.690	0.026	0.702	0.012	0.680	1.390	0.021
0.038	0.023	0.737	0.031	0.799	0.018	0.725	1.434	0.030
0.045	0.029	0.785	0.036	0.887	0.025	0.770	1.470	0.040
0.053	0.035	0.832	0.041	0.967	0.033	0.815	1.501	0.051
0.060	0.041	0.879	0.046	1.042	0.043	0.860	1.528	0.063
0.068	0.047	0.927	0.051	1.113	0.053	0.905	1.552	0.075
0.075	0.054	0.974	0.056	1.179	0.064	0.950	1.573	0.088
0.083	0.062	1.022	0.060	1.242	0.077	0.995	1.593	0.102
0.090	0.069	1.069	0.065	1.303	0.090	1.040	1.611	0.117
0.098	0.077	1.117	0.069	1.361	0.105	1.085	1.628	0.133
0.105	0.086	1.164	0.074	1.417	0.121	1.130	1.644	0.149
0.113	0.094	1.212	0.078	1.471	0.139	1.175	1.659	0.166
0.120	0.103	1.259	0.082	1.524	0.157	1.220	1.673	0.183
0.128	0.113	1.306	0.086	1.575	0.177	1.265	1.686	0.201
0.135	0.122	1.354	0.090	1.625	0.198	1.310	1.698	0.219
0.143	0.132	1.401	0.094	1.673	0.221	1.355	1.710	0.238
0.150	0.143	1.449	0.098	1.721	0.245	1.400	1.722	0.258

3.0 Notes

1. depth of flow d at D/20 increments
2. area of flow, A = [d * B] + [0.5 * d * d * H.I] + [0.5 * d * d * H.r]
3. wetted perimeter, Wp = B + [d * sqrt(1 + H.I^2)] + [d * sqrt(1 + H.r^2)]
4. hydraulic radius, R = A / Wp
5. velocity of flow, v = [1 / n] * [R^0.667] * [So^0.5] ===>
6. flow rate, Q = A * v Manning's equation of flow

7. surface width of flow, T = B + [d * H.I] + [d * H.r] 8. Froude number, Fr = v / [(g * A / T)^0.5]

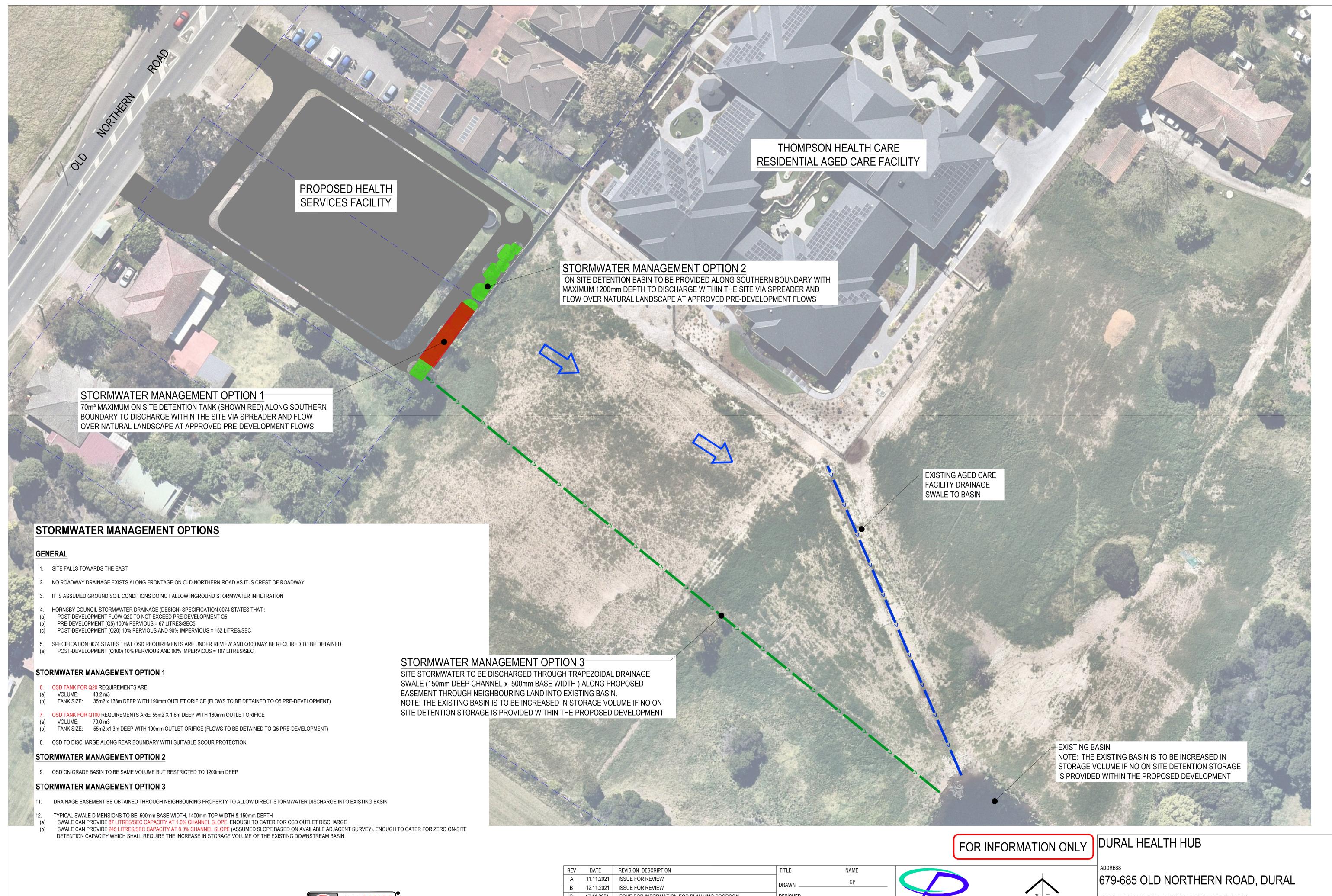
===>

when Fr < 1 ===> flow is sub-critical when Fr = 1 ===> flow is critical when Fr > 1 ===> flow is super-critical

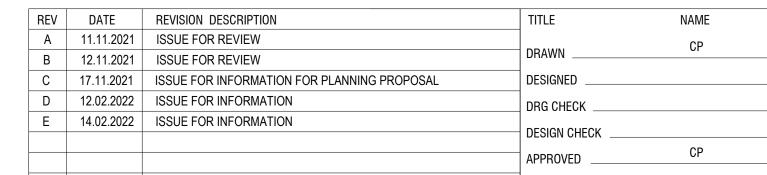
2 Conclusion

We believe that either of the 3 available Stormwater Management Options are viable and can be reviewed in detail during the Development Application design development stage. We understand that should an easement through the downstream neighbouring land be unattainable, then the options for a on site detention tank or basin (or composite of both) can be achieved to restrict the outgoing flows to pre-development conditions via a level spreader network along the rear boundary.

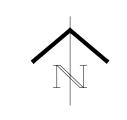
For any further queries regarding this report, please feel free to contact our office on 0408 696 526 or info@chrispconsulting.com.au


CHRISP Consulting

ABN: 11 164 806 044


T +61 408 696 526

 $\hbox{\bf E} \ \ in fo@chrisp consulting.com.au$



Telephone: 0408 696 526

STORMWATER MANAGEMENT PLAN

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED.

Turramurra, NSW, Australia 2074 www.chrispconsulting.com.au A.B.N. 11 164 806 044

SCALE @ A1 | SHEET No N.T.S. C201

Ε